Derivatives of Divalent Germanium, Tin, and Lead. Part VI. ${ }^{1}$ Crystal and Molecular Structure of Bis(1-phenylbutane-1,3-dionato)tin(II)

By Paul F. R. Ewings, Philip G. Harrison,* and Trevor J. King, Department of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD

The crystal structure of the title compound has been determined by Patterson and Fourier methods from X-ray diffractometer data. Crystals are monoclinic, space group $C 2 / c$, with $a=18 \cdot 821(2), b=10 \cdot 102(3), c=9 \cdot 733(3)$ $\AA, \beta=101 \cdot 57(2)^{\circ}, Z=4$. The tin atoms are chelated by two crystallographically equivalent benzoylacetonatoligands resulting in distorted pseudotrigonal bipyramidal co-ordination with the lone pair of electrons occupying an equatorial site : $r(\mathrm{Sn}-\mathrm{O})(\mathrm{ax}) 2 \cdot 290(6), r(\mathrm{Sn}-\mathrm{O})(\mathrm{eq}) 2 \cdot 135(1) \AA, \mathrm{O}(\mathrm{ax})-\mathrm{Sn}-\mathrm{O}(\mathrm{ax}) 150 \cdot 4(2), \mathrm{O}(\mathrm{eq})-\mathrm{Sn}-\mathrm{O}(\mathrm{eq})$ $94.7(1)^{\circ}$.

From the structural data available for $\operatorname{tin}(\mathrm{II})$-oxygen bonded compounds, it is clear that the classical pyramidal, three-co-ordinate stereochemistry for divalent tin is by no means universal. This geometry has been
${ }^{1}$ Part V, P. F. R. Ewings, D. E. Fenton, and P. G. Harrison, J.C.S. Dalton, 1975, 821.
discerned in potassium tris(formato)stannate(II) ${ }^{2}$ and $\operatorname{tin}(\mathrm{II})$ sulphate, ${ }^{3}$ whilst in basic $\operatorname{tin}(\mathrm{II})$ sulphate, $\mathrm{Sn}_{3} \mathrm{O}\left(\mathrm{OH}_{2}\right) \mathrm{SO}_{4}$, two of the tin atoms are three- and the
${ }_{2}^{2}$ A. Jelen and O. Lindquist, Acta Chem. Scand., 1969, 23, 3071.
${ }_{3}$ J. D. Donaldson and D. C. Puxley, Acta Cryst., 1972, B28, 864.
third four-co-ordinate. ${ }^{4}$ The tin atoms in the bis(thiourea) complex of $\operatorname{tin}(\mathrm{II})$ sulphate ${ }^{5}$ are also four-co-ordinated by two sulphate oxygen atoms and by two thiourea sulphur atoms in distorted pyramidal sites. No less than three different types of six-co-ordination have been characterised. In dihydrogen ethylene-diaminetetra-acetatostannate(II) the tin atom is centred in the rectangular face of a distorted trigonal prism. ${ }^{6}$ The tin(II) atoms of the mixed-valence carboxylate, $\mathrm{Sn}_{2}\left(\mathrm{O}_{2} \mathrm{C} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NO}_{2}-0\right)_{4} \mathrm{O}$, thf, experience pentagonal pyramidal co-ordination, the tin lone pair of electrons occupying the remaining axial position. ${ }^{7}$ However, in ditin(II) ethylenediaminetetra-acetate dihydrate, half the tin atoms are in similar pentagonal bipyramidal sites but with the lone pair now occupying an equatorial position. The remaining tin atoms in this compound are seven-co-ordinated in a complex way in which the lone pair is again stereochemically active. ${ }^{8}$ Eight-coordination for $\operatorname{tin}(\mathrm{II})$ atoms has been observed in $\mathrm{SnHPO}_{4} .{ }^{9}$

In Part V of this series ${ }^{1}$ we described the synthesis and spectroscopic properties of tin(II) bis(β-diketonates). Here we present the results of an X-ray crystallographic investigation of one member of this family of compounds bis(1-phenylbutane-1,3-dionato)tin(II).

EXPERIMENTAL

Golden cubic crystals of $\left[\mathrm{Sn}(\mathrm{PhCO} \cdot \mathrm{CH} \cdot \mathrm{COMe})_{2}\right]$ suitable for intensity measurements were obtained by recrystallisation from hot tetrahydrofuran. The crystals are air sensitive, but stable to X-rays, and a specimen of dimensions ca. $0.5 \times 0.5 \times 0.4 \mathrm{~mm}$ was mounted under nitrogen in a Lindemann capillary and used for both the initial photography and the subsequent intensity-data collection.

Crystal Data.- $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Sn}, M=441 \cdot 06, a=18.821(2)$, $b=10 \cdot 102(3), \quad c=9.733(3) \quad \AA, \quad \beta=101.58(2)^{\circ}, \quad U=$ $1812.9 \AA^{3}, D_{\mathrm{c}}=1.62 \mathrm{~g} \mathrm{~cm}^{-2}, Z=4, F(000)=880$. Space group $C 2 / c$ or $C c$ from systematic absences: $h k l(h+k=$ $2 n+1)$ and $k 0 l(l=2 n+1), C 2 / c$ from successful refinement. Mo- K_{α} radiation, $\lambda=0.7107 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=14.41$ cm^{-1}.

The space-group and initial cell parameters were determined from oscillation and zero- and first-layer Weissenberg photographs obtained on an equi-inclination Weissenberg camera. Relative intensities were collected up to $\theta 30.0^{\circ}$ with Mo- K_{α} radiation by use of a Hilger and Watts Y290 single-crystal four-circle diffractometer, accurate cell dimensions being obtained by least-squares refinement of ca. 20 reflections. Each reflection was counted for 30 s and the two associated background counts for 10 s . The reflections were brought to the same relative intensities by reference reflections taken for every one hundred reflections recorded; the diffractometer orientation was referenced every two hundred reflections.
All reflections with a corrected count of $<3 \sigma$ of the total counts were considered as non-observed and were not used further. The total number of reflections was thus reduced from 5173 to 4677 , and further reduced to 2459 by
${ }_{4}$ S. Grimvall, Acta Chem. Scand., 1973, 27, 1447.
5 J. D. Donaldson, D. G. Nicholson, D. C. Puxley, and R. A. Howie, J.C.S. Dalton, 1973, 1810.
© K. G. Shields, R. C. Seccombe, and C. H. L. Kennard, J.C.S. Dalton, 1973, 741.
averaging equivalent reflections. Finally, 352 reflections of lowest intensity were discarded in order to enable adequate computer storage for refinement. The intensities were corrected for Lorentz and polarisation effects, but not for absorption.

Structural Determination and Refinement.-The four tin atoms in the unit cell lie on two-fold axes in the special positions $0, y, \frac{1}{4}, 0, y, \frac{3}{4}, \frac{1}{2}, y+\frac{1}{2}, \frac{1}{4}$, and $\frac{1}{2}, \frac{1}{2}-y, \frac{3}{4}$. The value of y was obtained from a three-dimensional Patterson synthesis, and the positional parameters of the tin atom thus obtained were used to phase the initial structure-factor calculation. A Fourier synthesis produced the remaining

Table 1
Fractional atomic co-ordinates, with estimated standard deviations in parentheses

Atom	x / a	y / b	z / c
Sn	$\quad 0$	$0.05553(4)$	
$\mathrm{O}(1)$	$-0.0574(1)$	$0.1994(3)$	$0.1088(3)$
$\mathrm{O}(2)$	$0.0914(1)$	$0.1134(3)$	$0.1373(3)$
$\mathrm{C}(1)$	$-0.1003(2)$	$0.3413(4)$	$-0.0805(3)$
$\mathrm{C}(2)$	$-0.0844(2)$	$0.4564(4)$	$-0.1501(4)$
$\mathrm{C}(3)$	$0.0886(2)$	$0.1837(4)$	$0.0314(4)$
$\mathrm{C}(4)$	$-0.0400(2)$	$0.2600(3)$	$0.0032(3)$
$\mathrm{C}(5)$	$-0.1723(2)$	$0.3010(4)$	$-0.0874(4)$
$\mathrm{C}(6)$	$0.0258(2)$	$0.2557(4)$	$-0.0372(4)$
$\mathrm{C}(7)$	$-0.2296(2)$	$0.3737(5)$	$-0.1663(4)$
$\mathrm{C}(8)$	$-0.1431(3)$	$0.5302(4)$	$-0.2294(5)$
$\mathrm{C}(9)$	$-0.2145(3)$	$0.4885(5)$	$-0.2364(5)$
$\mathrm{C}(10)$	$0.1558(2)$	$0.1931(7)$	$-0.0311(5)$

Table 2
Bond lengths (\AA) and angles (${ }^{\circ}$), with estimated standard deviations in parentheses
(a) Bond lengths

$\mathrm{Sn}-\mathrm{O}(1)$	$2 \cdot 135(1)$	$\mathrm{C}(4)-\mathrm{C}(1)$	$1 \cdot 497(4)$
$\mathrm{Sn}-\mathrm{O}(2)$	$2 \cdot 290(6)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 408(5)$
$\mathrm{O}(1)-\mathrm{C}(4)$	$1 \cdot 286(4)$	$\mathrm{C}(2)-\mathrm{C}(8)$	$1 \cdot 392(6)$
$\mathrm{O}(2)-\mathrm{C}(3)$	$1 \cdot 248(5)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 385(7)$
$\mathrm{C}(3)-\mathrm{C}(10)$	$1 \cdot 508(6)$	$\mathrm{C}(9)-\mathrm{C}(7)$	$1 \cdot 398(7)$
$\mathrm{C}(3)-\mathrm{C}(6)$	$\mathrm{l}(419(5)$	$\mathrm{C}(7)-\mathrm{C}(5)$	$1 \cdot 396(6)$
$\mathrm{C}(6)-\mathrm{C}(4)$	$1 \cdot 378(5)$	$\mathrm{C}(5)-\mathrm{C}(1)$	$1 \cdot 399(5)$
$\quad(b)$ Bond angles			
$\mathrm{O}(1)-\mathrm{Sn}-\mathrm{O}\left(1^{\prime}\right)$	$94 \cdot 7(1)$	$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(1)$	$114 \cdot 5(3)$
$\mathrm{O}(2)-\mathrm{Sn}-\mathrm{O}\left(2^{\prime}\right)$	$150 \cdot 4(2)$	$\mathrm{C}(1)-\mathrm{C}(4)-\mathrm{C}(6)$	$119 \cdot 0(3)$
$\mathrm{O}(1)-\mathrm{Sn}-\mathrm{O}(2)$	$81 \cdot 2(1)$	$\mathrm{C}(4)-\mathrm{C}(1)-\mathrm{C}(2)$	$121 \cdot 6(3)$
$\mathrm{Sn}-\mathrm{O}(2)-\mathrm{C}(3)$	$128 \cdot 9(3)$	$\mathrm{C}(4)-\mathrm{C}(1)-\mathrm{C}(5)$	$119 \cdot 0(3)$
$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(10)$	$117 \cdot 9(3)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)$	$119 \cdot 3(3)$
$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(6)$	$125 \cdot 0(3)$	$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{C}(7)$	$120 \cdot 5(4)$
$\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(10)$	$117 \cdot 2(4)$	$\mathrm{C}(5)-\mathrm{C}(7)-\mathrm{C}(9)$	$119 \cdot 6(4)$
$\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(4)$	$126 \cdot 2(3)$	$\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{C}(8)$	$120 \cdot 2(4)$
$\mathrm{Sn}-\mathrm{O}(1)-\mathrm{C}(4)$	$131 \cdot 5(4)$	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(2)$	$120 \cdot 6(4)$
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(6)$	$126 \cdot 4(3)$	$\mathrm{C}(8)-\mathrm{C}(2)-\mathrm{C}(1)$	$1198(4)$

twelve non-hydrogen light atoms. Eight cycles of isotropic block-diagonal refinement followed by four cycles of anisotropic block-diagonal refinement gave R of 0.048 . At this stage a weighting scheme of the form $w=\left(A / F_{\mathrm{o}}\right)^{2}$, where $F_{\mathrm{o}}>A$ and $A=67 \cdot 00$, was applied. Two further cycles of anisotropic block-diagonal refinement gave a final R value of 0.041 . The scattering factors used were those for neutral atoms. ${ }^{10}$ Calculations were performed using the ' X-Ray ' 70 ' suite of programmes. The results are collected in Tables 1-4. Final observed and calculated structure factors, and thermal parameters are listed in
${ }^{7}$ P. F. R. Ewings, P. G. Harrison, T. J. King, and A. Morris, J.C.S. Chem. Comm., 1974, 53.
${ }_{s}$ F. P. van Remoortere, J. J. Flynn, F. P. Boer, and P. P. North, Inorg. Chem., 1971, 10, 1511.
${ }^{9}$ A. F. Berndt and R. Lamberg, Acta Cryst., 1971, B27, 1092.
${ }^{10}$ ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.

Supplementary Publication No. SUP 21284 (12 pp., 1 microfiche). \dagger

Table 3
Principal intermolecular contacts (\AA), with estimated standard deviations in parentheses

$\mathrm{Sn} \cdots \mathrm{C}(6)$	$3 \cdot 74(1)$	$\mathrm{Sn} \cdots \mathrm{O}(1)$	$4 \cdot 63(1)$
$\mathrm{Sn} \cdots \mathrm{C}(3)$	$3.78(1)$	$\mathrm{Sn} \cdots \mathrm{C}(1)$	$4.85(1)$
$\mathrm{Sn} \cdots \mathrm{O}(2)$	$4 \cdot 18(1)$	$\mathrm{C}(3) \cdots \mathrm{C}(10)$	$4 \cdot 97(1)$
$\mathrm{Sn} \cdots \mathrm{C}(4)$	$4 \cdot 18(1)$	$\mathrm{Sn} \cdots \mathrm{Sn}$	$4 \cdot 99(1)$

Table 4
Equations of least-squares planes, and, in square brackets, deviations (\AA) of atoms from these planes
Plane (1): $\mathrm{O}(1), \mathrm{O}(2), \mathrm{C}(3), \mathrm{C}(4), \mathrm{C}(6)$

$$
3 \cdot 6152 x+7 \cdot 9913 y+5 \cdot 1652 z-1 \cdot 9475=0
$$

[$\mathrm{Sn}-0.212(2)]$
Plane (2): C(1), C(2), C(5), C(7)-(9)

$$
-3.9989 x+5.5307 y+8.1322 z-1.6369=0
$$

[$\mathrm{Sn} 0.703(3), \mathrm{O}(2)-0.258(3), \mathrm{C}(3) 0.047(3), \mathrm{C}(4) 0.751(3)$ $\mathrm{C}(10)-0 \cdot 313(3)]$
Dihedral angles $\left({ }^{\circ}\right)$:

$$
\begin{array}{ll}
(1)-(2) \\
(3)-\left(3^{\prime}\right)
\end{array} * \quad \begin{aligned}
& 30 \cdot 42 \\
& 88 \cdot 30
\end{aligned}
$$

* Planes (3) and (3^{\prime}) are defined by atoms $\mathrm{Sn}, \mathrm{O}(1), \mathrm{O}(2)$, and $\mathrm{Sn}, \mathrm{O}\left(1^{\prime}\right), \mathrm{O}\left(2^{\prime}\right)$, respectively.

Table 5

Comparison of valence-bond angles $\left(^{\circ}\right)$ in $[(\mathrm{PhCO} \cdot \mathrm{CH} \cdot$ $\left.\mathrm{COMe})_{2} \mathrm{Sn}\right]$ with those in structurally related compounds

Compound	$\mathrm{X}-\mathrm{M}-\mathrm{X}(\mathrm{eq})$	$\mathrm{X}-\mathrm{M}-\mathrm{X}(\mathrm{ax})$
$\left[\mathrm{Sn}(\mathrm{PhCO} \cdot \mathrm{CH} \cdot \mathrm{COMe})_{2}\right]^{\text {a }}$	$150 \cdot 4$	$94 \cdot 7$
$\left[\mathrm{Sn}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}\right]^{\text {b }}$	139.2	96.2
$\left[\mathrm{Pb}\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}\right]^{\text {c }}$	$133 \cdot 2$	96.2
$\left[\mathrm{Pb}\left(\mathrm{S}_{2} \mathrm{COEt}\right)_{2}\right]^{\text {d }}$	137.2	$98 \cdot 2$
$\left[\mathrm{Pb}\left[\mathrm{S}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right]_{2}\right]$ 。	138.2	$94 \cdot 1$
$\left[\mathrm{Pb}\left(\mathrm{S}_{2} \mathrm{COPr}{ }^{1}\right)_{2}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right]^{f}$	127.7	$95 \cdot 0$
$\left[\mathrm{Pb}\left(\mathrm{S}_{2} \mathrm{COBu}^{\mathrm{n}}\right)_{2}\right]^{\text {a }}$	141.2	91.7

${ }^{a}$ This work. ${ }^{b}$ J. Potenza and D. Mastropaolo, Acta Cryst., 1973, B29, 1830. © H. Iwasaki and H. Hagihara, Acta Cryst., 1972, B28, 507. d H. Hagihara and S. Yamashita, Acta Cryst., 1966, 21, 350 . © T. Ito, Acta Cryst., 1972, B28, 1034. f H. Hagihara, N. Yoshida, and Y. Watanabe, Acta Cryst., 1969, B25, 1775. ${ }^{g}$ H. Hagihara, Y. Watanabe, and S. Yamashita, Acta Cryst., 1968, B24, 910.

Figure 1 View of the molecule down the two-fold axis; symmetry-related atoms are primed
\dagger See Notice to Authors No. 7 in J.C.S. Dalton, 1974, Index issue.

DISCUSSION
As may be seen from Figures 1-3, crystals of $\left[\mathrm{Sn}(\mathrm{PhCO} \cdot \mathrm{CH} \cdot \mathrm{COMe})_{2}\right]$ consist of discrete molecules. The two crystallographically equivalent β-diketonate rings chelate the tin in an unsymmetrical fashion,

Figure 2 Projection of the unit cell on the $b c$ plane

Figure 3 Projection of the unit cell on the $a b$ plane
resulting in a distorted trigonal bipyramidal geometry at tin with the lone pair of electrons occupying an equatorial site. Confirmation of the stereochemical activity of the lone pair is readily apparent from the stacking of the molecules in the crystal (Figure 2). In
addition, the $\mathrm{O}(\mathrm{eq})-\mathrm{Sn}-\mathrm{O}(\mathrm{eq})$ and $\mathrm{O}(\mathrm{ax})-\mathrm{Sn}-\mathrm{O}(\mathrm{ax})$ bond angles are reduced to 94.7 and 150.4°, respectively, owing to lone-pair-bond-pair repulsions. Similar structures, but generally with a greater degree of distortion, have been observed for $\operatorname{tin}(\mathrm{II})$ and lead(II) dithiocarbamates, -carbonates, and -phosphoridates (Table 5).
Unlike $\left[\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{acac})_{2}\right],{ }^{11}$ in which the $\mathrm{Sn}-\mathrm{O}$ bonds are equivalent, the $\mathrm{Sn}-\mathrm{O}(\mathrm{eq})$ bond distance $(2 \cdot 135 \AA)$ is
$\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bond distances. The (Ph) $\mathrm{C}-\mathrm{O}$ distance ($1 \cdot 286 \AA$) approaches that of a single bond, whilst the (Me)C-O distance ($1 \cdot 248 \AA$) is only marginally longer than that in simple carbonyl compounds. Similarly, the $(\mathrm{Ph}) \mathrm{C}-\mathrm{CH}$ distance $(1.378 \AA)$ is appreciably shorter, and hence with a greater double-bond character, than the corresponding (Me) $\mathrm{C}-\mathrm{CH}$ distance ($1 \cdot 419 \AA$). Both, however, are shorter than the two exocyclic $\mathrm{C}-\mathrm{C}$ distances

Table 6
Comparison of tin-oxygen bond distances (\AA) in various tin(II) derivatives

Compound	Co-ord. no.	Geometry*	$r(\mathrm{Sn}-\mathrm{O})$
$\left[\mathrm{Sn}\left(\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}_{2}\right)_{2}\right]^{a}$	4	Dist. ψ-trig. bipy.	$2 \cdot 290$ (ax, $2 \cdot 135$ (eq)
$\mathrm{K}\left[\mathrm{Sn}\left(\mathrm{O}_{2} \mathrm{CH}\right)_{3}\right]^{6}$	3	Trig. bipy.	2.139-2.182
$\mathrm{Sn}\left[\mathrm{SO}_{4}\right]{ }^{\circ}$	3	Trig. bipy.	2.25-2.27
$\mathrm{Sn}\left[\mathrm{SO}_{4}\right], 2\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{CS}{ }^{d}$	4	Dist. py.	2-24, $2 \cdot 41$
$\left[\mathrm{Sn}(\mathrm{edtaH})^{2}\right]^{e}$	6	Dist. trig. prism	$\begin{aligned} & 2 \cdot 196,2 \cdot 343,2 \cdot 635, \\ & 3 \cdot 057 \end{aligned}$
$\left[\mathrm{Sn}_{2}(\mathrm{edta})\right], 2 \mathrm{H}_{2} \mathrm{O}^{f}$			
Sn^{1}	6	Dist. ψ-pentag. bipy.	$\begin{aligned} & 2 \cdot 14,2 \cdot 18,2 \cdot 30 \\ & 3 \cdot 10,3 \cdot 14,3 \cdot 18 \end{aligned}$
$\mathrm{Sn}^{\text {II }}$	7	2 Dist. interlocking tetrahedra	$2 \cdot 29,2 \cdot 45,2 \cdot 64,2 \cdot 70$
$\left[\mathrm{Sn}_{2}\left(\mathrm{O}_{2} \mathrm{C} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{NO}_{2}\right)_{4} \mathrm{O}\right]$, thf 9	6	Pentag. py.	$\begin{aligned} & 2 \cdot 12(\mathrm{ax}), \\ & 2.40-2.59(\mathrm{eq}) \end{aligned}$

${ }^{a}$ This work. ${ }^{b}$ Ref. 2. ${ }^{c}$ Ref. 3. ${ }^{d}$ Ref. 5. ${ }^{e}$ Ref. 6. ${ }^{f}$ Ref. 8. ${ }^{\boldsymbol{g}}$ Ref. 7.

* Dist. $=$ distorted, trig. = trigonal, bipy. $=$ bipyramidal, $\mathrm{py} .=$ pyramidal, tri. $=$ triangular, pentag. $=$ pentagonal.

Table 7
Comparison of bond distances (\AA) and angles $\left({ }^{\circ}\right)$ of the chelate ring in $\left[\mathrm{Sn}(\mathrm{PhCO} \cdot \mathrm{CH} \cdot \mathrm{COMe})_{2}\right]$ with those in other metal β-ketoenolates

Compound	$\mathrm{O}-\mathrm{M}-\mathrm{O}$	$\mathrm{M}-\mathrm{O}-\mathrm{C}$	$\mathrm{O}-\mathrm{C}-\mathrm{C}$	$\mathrm{C}-\mathrm{C}-\mathrm{C}$	$r(\mathrm{C}-\mathrm{O})$	$r(\mathrm{C}-\mathrm{C})$
$\left[\mathrm{Sn}\left(\mathrm{PhCO} \cdot \mathrm{CH} \cdot \mathrm{COMe}_{2}\right]^{a, b}\right.$	$81 \cdot 2$	$128 \cdot 9,131 \cdot 5$	$117 \cdot 9,126 \cdot 5$	$126 \cdot 4$	$1 \cdot 248,1 \cdot 286$	$1 \cdot 378,1 \cdot 419$
$\left[\mathrm{Pd}(\mathrm{acac})_{2}\right]^{a, c}$	$95 \cdot 6$	123,124	$125 \cdot 5$	126	$1 \cdot 31,1 \cdot 32$	$1 \cdot 39,1 \cdot 44$
$\left[(\mathrm{acac})_{2} \mathrm{SnCo}_{2}(\mathrm{CO})_{7}\right]^{d}$						
Ring $(1):$	$84 \cdot 4$	$125 \cdot 5,130 \cdot 7$	$123 \cdot 9,130 \cdot 0$	$123 \cdot 1$	$1 \cdot 27,1 \cdot 28$	$1 \cdot 35,1 \cdot 45$
Ring $(2):$	$84 \cdot 4$	$128 \cdot 8,128 \cdot 9$	$122 \cdot 6,124 \cdot 1$	$130 \cdot 8$	$1 \cdot 32,1 \cdot 33$	$1 \cdot 32,1 \cdot 34$
$\left[\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{acac})_{2}\right]^{a, e}$	86	126,127	124,130	130	$1 \cdot 27,1 \cdot 28$	$1 \cdot 36,1 \cdot 44$

${ }^{a}$ Chelate rings crystallographically equivalent. ${ }^{b}$ This work. ${ }^{c}$ A. N. Knyazeva, E. A. Shugan, and L. M. Shkol'nikova, J. Struct. Chem., 1972, 11, $875 .^{d}$ R. D. Ball and D. Hall, J. Organometallic Chem., 1973, 56, 209. e Ref. 11; acac = acetylacetonato.
significantly shorter than $\mathrm{Sn}-\mathrm{O}(\mathrm{ax})(2 \cdot 290 \AA)$. These values fall in the rather wide range observed for other tin(II)-oxygen bonds (Table 6), but, moreover, are similar to the $\mathrm{Sn}-\mathrm{O}$ bond distances in $\left[\mathrm{Ph}_{3} \mathrm{Sn}\right.$ (ONPhCOPh)] ${ }^{12}$ which contains both covalent ($2.091 \AA$) and co-ordinate ($2 \cdot 308 \AA$) $\mathrm{Sn}-\mathrm{O}$ interactions. The contribution of the $\mathrm{PhC}(\mathrm{OSn}): \mathrm{CH} \cdot \mathrm{C}(: \mathrm{O}) \mathrm{Me}$ enolate form to the overall structure is manifest in the endocyclic
${ }^{11}$ G. A. Miller and E. O. Schlemper, Inorg. Chem., 1973, 12, 677.
(1.508 and $1.497 \AA$) which are as expected (Table 7). The twist of the phenyl group from the plane of the chelate ring ($30 \cdot 4^{\circ}$) is most probably due to crystalpacking forces.

We thank the S.R.C. and Albright \& Wilson Ltd. for support in the form of a CAPS Award (to P. F. R. E.).
[4/2121 Received, 14th October, 1974]
${ }_{12}$ P. G. Harrison and T. J. King, J.C.S. Chem. Comm., 1972, 815.

